

Machine Learning

Course Duration: 7 days/ 48 hours

Course Outline:

The Content given below may be customized according to the participant level, span of training and their special requirement. The below content is a standard content for Artificial Intelligence & Soft Computing, which we make use while delivering trainings at all the reputed Institutes, Universities and for corporate training.

1. Introduction & Basics of AI	(2 Hours)
Introduction to Artificial Intelligence	
Applications of AI	
Different methods used for AI	
Tradition Methods & New Methods	
2. Programming Language - (Python)	(6 Hours)
Working with Software Environment	
 Variables, Lists, Vectors, Matrices & Arrays 	
 Control Structures – If else, for and while loop 	
Functions & Subroutines	
Object oriented Programming	
Miscellaneous Functions & their applications	
Data Management in R/ Python	
• Concepts of Text Mining and practical application in R and Python	
3. Agent Environment & Algorithms for Intelligent Systems	(5 Hours)
Single Agent & Multiagent Environment	
 Model based, utility based and learning agents 	
Simulated Annealing	
Constraint Satisfaction Problems	
Case Study & Hands on	
1. 8 Queen Problem	
2. Simulated Annealing Example	
4. Machine Learning – Neural Network Analysis	(15 Hours)
Introduction to Machine Learning	
Applications of Machine Learning	
Artificial Intelligence & Machine Learning	
Machine Learning application/ Result interpretation in R and Pythe	on
Database Mining & Machine Learning	
Supervised Learning Introduction & Examples	
 Unsupervised Learning Introduction & Examples 	
Linear Regression & implementation	
Introduction to Gradient Descent Algorithm	
Linear Algebra review	

- Multivariable Linear Regression
- Introduction to Neuron
- Introduction to Network Architecture
- Designing Neural Network Model
- Model Representation Methods
- Weights & Activation Functions
- Single Layer Neural Network
- Multilayer Neural Network Architecture
- Training the Network
- Backward Propagation Training
- Using the Network
- Importing & Exporting Network
- Importing & Exporting Training Data
- Dynamic Neural Network

Case study & Hands On:

- 1. Single Perceptron Model (Straight Line Hypothesis Training)
- 2. Curve Training / Multilayer Training
- 3. XOR Example
- 4. Advance Classification Examples

5. Machine Learning – Clustering

- Various Clustering Algorithms
- K Means Clustering
- C Means Clustering
- Principal Component Analysis
- Using PCA for Data Clustering

6. Machine Learning – SVM & Natural Language Processing

Introduction to SVM	
---------------------	--

- Decision Boundary and Hyper plane
- Minimization of Cost function for optimized hyperplane
- Support Vector for Classification Parameters

• Support Vector for Regression – Parameters

Case study & Hands On:

- 1. Character Recognition
- 2. Cancer Recognition
- 3. Regression Problem Example

7. Fuzzy Logic

- Introduction to Fuzzy Logic
- Fuzzy Set Theory & Fuzzy sets
- Working with Fuzzy logic Algorithm
- Fuzzy Inference System
- Problem Formulation
- Fuzzification creating fuzzy sets
- Membership Function

(8 Hours)

(6 Hours)

- Rule Base
- Defuzzification
- Mamdani&Sugeno Methods
- Fuzzy Clustering
- Fuzzy C Means Clustering
- Fuzzy K Means Clustering
- Introduction to image analysis

Case study & Hands On:

- 1. Tipping Problem
- 2. Washing Machine Problem
- 3. Fuzzy C means Clustering Examples 1
- 4. Fuzzy C means Clustering Example 2
- 5. Fuzzy K Means Clustering Example

8. Genetic Algorithm

- Working with Genetic Algorithm
- Getting started with Genetic Algorithm
- Reproduction, Crossover & Mutation
- Fitness Function
- Defining Fitness Function
- Permutation & Combinations
- Working with GA Examples
- Banking example
- Telecom example
- Model Validation

Case study & Hands On:

- 1. GA Example 1
- 2. GA Example 2

(8 Hours)